
Linux Printing Tutorial at Linux−Kongress 2002 Cologne, Germany:

(IV.) Foomatic from the Developer's View:

How does Foomatic work?

Table of Contents
(IV.) Foomatic from the Developer's View: How does Foomatic work?...................................1
Why Foomatic?...1
How did linuxprinting.org and Foomatic emerge?...2

CUPS makes its appearance...2
How CUPS uses the original PostScript PPD files...2
How CUPS extends use of PPDs to the non−PostScript printer world................................3
Not enough supported printers...3
CUPS−O−Matic and Foomatic −− the first incarnations...3
PDQ−O−Matic next..4
Creation of "Linuxprinting.org"...4
MandrakeSoft goes CUPS!...4
The Database grows up...4
From Postgres to XML...4
C instead of Perl: huge speed improvements for Foomatic..5
Gathering more support for Foomatic and the Database..5

The current Foomatic − the 2.0.x series..5
The XML database...5
How does the database work? − A small example...6
What is done to set up a print queue with this data?..8
How does printing with Foomatic work?...9
The structure of the XML database..10

An option entry: "PageSize" (db/source/opt/2.xml)...11
A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml)............................14
A driver entry: "md2k" (db/source/driver/md2k.xml)...17

What is planned for the future − the 2.9.x series..19
Adobe−compliant PPD files for all spoolers..19
Collective options...19
Features of Adobe's PPD format..20
Splitting Foomatic in various packages..20

(IV.) Foomatic from the Developer's View: How does it work?

(IV.) Foomatic from the Developer's View: How does it work?

(IV.) Foomatic from the Developer's View:
How does Foomatic work?

Presented by Till Kamppeter, maintainer of linuxprinting.org, leader of the Foomatic project, author
of XPP, and responsible for the printing part of Mandrake Linux

What we will show: Why Foomatic? − History of linuxprinting.org − Database structure − How
are configuration files generated − Data flow when printing with Foomatic − What are the plans
for the further development?

Why Foomatic?
Formerly, all GNU/Linux distributions and other Unix−style operating systems used LPD as the
printer spooler. This is technology of the 70th made for the ASCII−text−only line printers of that
time, so any support for printing options, as output quality or so were not needed. Due to Unix
being used only on mainframes in computing centers where only experts are operating the
computers newbie−friendliness did not have a high priority, too.

Unfortunately LPD was used for a very long time, up to even nowadays, but printers changed a
lot, they could print graphics, in color, on various paper types and sizes, for internal or
presentation purposes, and so on. And printers and pas got so cheap that many people have them
at home.

To make use of modern printers most Unix applications describe the pages to print in PostScript
and send this data to the printer spooler. As many printers do not understand PostScript, the
spooler has to translate this into the printer's language. To do so, it calls GhostScript, a software
PostScript interpreter running on the computer. GhostScript contains the printer drivers, compiled

(IV.) Foomatic from the Developer's View: How does Foomatic work? 1

http://www.linuxprinting.org/
http://www.linuxprinting.org/foomatic.html
http://cups.sf.net/xpp/
http://www.mandrakesoft.com/

into its executable binary. Every driver knows the protocols of certain printer models. Due to the
drivers being written by many different programmers, they have all very different options, to be
set on the GhostScript command line or to be inserted into the PostScript code sent to
GhostScript. In addition there are filter−style drivers: GhostScript generates a standard bitmap
format and the driver as a separate process translates the bitmap format into the printer's format.

This makes manual configuring of printers a very complicated task. So the distribution
manufacturers had to find a solution to make it possible for the end user to set up as many
different printer models as possible. So systems like the RHS Printfilters or APS filters were
created, but they have still many disadvantages:

Every distribution did its on thing.•
Only one spooler was supported (Usually LPD).•
Not all and the newest drivers were supported.•
Options (as resolution, ...) can only be set by the administrator when he sets up the queue.•
Not all options were available.•
Difficult to add new drivers and printers.•

In contrary to the older printer support database and integration systems, Foomatic currently has a
database of around 900 printer models, nearly all known free software printer drivers (around
240) and the complete information how the drivers are executed and which options are available.
Foomatic comes with scripts to generate driver configuration files or even complete print queues
for all known free spoolers (CUPS, LPD, LPRng, GNUlpr, PPR, PDQ, and spooler−less
printing). Foomatic−based print queues allow the user to adjust all options of the printer driver on
a per−job basis. And the development on linuxprinting.org is done independent of particular
Linux distributions.

How did linuxprinting.org and Foomatic emerge?
The linuxprinting.org website has evolved from the Printing HOWTO, which Grant Taylor first
wrote in 1992 and has maintained ever since. Starting in 1998, he began operating a little
database of printer support information, and that little list has now grown into the largest
repository of free software printing−related information around.

CUPS makes its appearance

In June 1999, the new CUPS printing system did undergo its first public release. Besides the
innovative "printer browsing" features of its spooler, it contained a Ghostscript−based PostScript
interpreter (the "pstoraster" filter). PostScript printers were supported by the usage of the original
"PPDs".

How CUPS uses the original PostScript PPD files

The CUPS server associated the appropriate PPD to each queue. It could parse the PPD and
extract the user−available print options for the related target printer. Clients would get told the
PPD options for the target printer by the server "on the fly". Clients therefore don't need the PPD
installed locally: instead they receive the PPD options as a simple list of choices from which they
can build a commandline. GUI tools could translate the list of printer options into nice dialogs.
The client just selects the target printer and sends the desired print options as commandline
parameters to the CUPS server, along with the printfile (in most cases PostScript). The CUPS

(IV.) Foomatic from the Developer's View: How does it work?

2 How did linuxprinting.org and Foomatic emerge?

http://www.cups.org/
http://sf.net/projects/lpr
http://www.lprng.com/
http://sf.net/projects/lpr
http://ppr.sf.net/
http://pdq.sf.net/
http://www.linuxprinting.org/direct-doc.html
http://www.linuxprinting.org/direct-doc.html
http://www.linuxprinting.org/
http://www.linuxprinting.org/
http://www.picante.com/~gtaylor/
http://www.picante.com/~gtaylor/

server would then, based on the contents of the PPD for the individual options, insert the right
command into the PostScript which would go to the printer (or rather, the printer's PostScript
interpreter). For the first time a UNIX printing system was there, which supported the same print
choices as known in the Windows world, by simply using the same PPDs that were created by the
manufacturers for each of their PostSript models.

How CUPS extends use of PPDs to the non−PostScript printer world

However, CUPS didn't limit its PPD support to PostScript printers and their RIPs only. It rather
extended it to non−PostScript models too. Of course, you couldn't get a PPD for non−PostScript
consumer inkjets at the time. And PPDs were never intended for non−PostScript printers either.

But the CUPS developers translated the print options (and related low−level printer commands)
available for some popular inkjets, deskjets, laserjets and dot matrix printers into a
PPD−conforming syntax and could thusly handle those printers inside the same framework as the
real−PostScript models. CUPS added one simple line to the PPD ("*cupsFilter..."), which told the
CUPS server how to handle the printfile. For the clients, any CUPS printer is a "PostScript"
printer. To them it is not relevant, where the RIP is located: the PostScript may be interpreted by
the device itself or by a Software−RIP on the server. They want their paper coming out of the
printer as required.

Not enough supported printers...

CUPS created a brilliant concept for handling print options for all printer types through PPDs −−
however it didn't deliver many PPDs. It shipped a few sample PPD files, which were generic
enough to support a few hundred LaserJet, DeskJet, Stylus Color, Stylus Photo and Dot Matrix
printers −− but the very "generic" part of the picture made them stop short of handling the very
specific features of each model. And it didn't support at all many models which were supported
by Ghostscript.

Grant initially was no great fan of CUPS. However, the way CUPS handled the printfiles with the
help of PPDs, ignited his idea to design a mechanism which would automatically generate
CUPS−compatible PPDs from the contents of his database.

CUPS−O−Matic and Foomatic −− the first incarnations

If CUPS could guide the print data through its "pstoraster" filter, couldn't it also be guided
through the system−installed Ghostscript? Of course, CUPS' modular design not only allows for,
but even invites developers to contribute additional filters. Grant didn't want to add an
"additional" filter. He wanted to get all the printers running with traditional Ghostscript−based
spoolers to work with CUPS too. His database contained most of the complicated, differing
Ghostscript commandline parameters, which made different Ghostscript filters (="devices") and
models work. This info could surely go into a PPD−like file, too, describing a driver setup for a
Ghostscriptfilter/printermodel combo.

In early 2000, he threw out the driver half of his database and designed a new driver information
scheme which gives users of many printing systems vastly enhanced support for the use of free
software drivers. The first release of "CUPS−O−Matic" appeared. It was an online−working
generator of PPD−files for the use with CUPS. You could use a browser, surf to the
CUPS−O−Matic page, select your model, get an appropriate driver (or Ghostscript device)

(IV.) Foomatic from the Developer's View: How does it work?

How CUPS extends use of PPDs to the non−PostScript printer world 3

suggested, click "OK" and generate on the fly a PPD file. It would need an additional
"cupsomatic" Perlscript installed as a faked CUPS filter, which would then handle the printfile
instead of CUPS.

PDQ−O−Matic next...

Soon after, he also had the first automatic configuration generator for "PDQ" in place, which long
after remained his personal favorite printing system recommended to end users. (PDQ however is
not fit for handling medium to large sized network printing environments).

Creation of "Linuxprinting.org"

In June 2000, Grant moved the whole thing out from his personal area at picante.com to the
newly acquired domain linuxprinting.org, which better reflects this site's purpose (and which is
certainly easier to remember!). Later that year, he bought a shiny new server and collocated the
thing to better handle the traffic.

MandrakeSoft goes CUPS!

In August 2000, Till Kamppeter was employed by MandrakeSoft in Paris due to his XPP project.
His task was switching from LPD to CUPS as default printing system in Mandrake Linux 7.2.

To make this reality without loosing support for any printer which was supported under
Mandrake Linux 7.1, he made use of the Foomatic database to integrate the good old GhostScript
printer drivers in the CUPS system. He got write access to the database from Grant so that he
could enter the execution data of all the drivers, which is essential for the database to generate the
PPD files which CUPS needs to support certain printer/driver pairs.

The Database grows up

This way the database was not only a collection of user reports how well printers are supported by
free software, but also a powerful tool to configure printers under various spoolers. In contrary to
other printer configuration database systems (as RHS Printfilters and APS filters) the Foomatic
system offered full support to all user−settable options of all free software printer drivers (to
obtain this Till had often to consult the driver's source code due to lack of driver documentation)
and supported three spoolers (CUPS, LPD and alike, PDQ).

In March 2001, Red Hat 7.1 came out as the second distribution using Foomatic data for their
new printer setup utility "printconf" and dropping their RHS Printfilters which were the most
used printer setup database before.

From Postgres to XML

Also in March 2001, the original Postgres−based system was thrown out and replaced with the
new XML version of the Foomatic configuration and filter system. This made it possible to
download the complete Foomatic database and use it on one's local machine. In theory this was
possible, but the engine to generate the spooler−specific configuration files from the printer,
driver, and option XML files was very slow and memory consuming (around 150 MB). In
addition, it needed something like 10 Perl libraries for the XML handling, which made it difficult
for inexperienced users to install Foomatic. This was version 1.1 of Foomatic.

(IV.) Foomatic from the Developer's View: How does it work?

4 PDQ−O−Matic next...

http://www.picante.com/
http://www.linuxprinting.org/
http://www.linuxprinting.org/till/
http://www.linuxprinting.org/till/
http://www.mandrakesoft.com/
http://cups.sourceforge.net/xpp/

In July 2001, Grant gave full administration access to Till so that he could maintain the system.
Grant had not much time for it any more, due to his work at a new start−up company.

C instead of Perl: huge speed improvements for Foomatic

By the end of August 2001, Till introduced a C program into Foomatic to accelerate the
generation of the configuration files substantially, which allowed for the first time to compute the
files on−demand from a local XML database instead of shipping pre−compiled files for all
printer−driver combos. He also did the full implementation of the "foomatic−configure" and
"foomatic−printjob" scripts which provide printer configuration and print job handling interfaces
which are independent of the spooler actually used.

In October 2001, Mandrake Linux 8.1 came out as the first distribution supporting three spoolers
(CUPS, LPRng, and PDQ) equally, with the help of the Foomatic system and spooler−specific
configuration files being computed on demand. This was done through a new version of
"printerdrake" (Mandrake's printer setup tool) vastly improved by Till.

April 2002: A second C program added by Till liberated Foomatic from needing this big amount
of Perl libraries. The libxml−based C program reads XML files and puts out Perl data structures
which can be read directly by Perl programs without special Perl libraries. This way the
installation of Foomatic got much easier, and the web site got faster. This is the initial work
leading to version 2.0 of Foomatic.

Gathering more support for Foomatic and the Database

June 2002: Till met printing developers of Red Hat and SuSE on a Foomatic workshop which he
has giving at "LinuxTag 2002" in Karlsruhe in Germany. They joined the Foomatic developer
team and a new design for Foomatic where all spoolers will use PPD files as printer/driver
description files is under discussion.

July 2002: Till released the version 2.0.0 of Foomatic to open a stable branch and to let the
development of the new PPD−centric Foomatic happen in a development branch (version 2.9.x)
to approach version 3.0.

Now Foomatic has evolved into to an unofficial standard: It serves as the printer/driver
capabilities database and driver/spooler integration system for the GNU/Linux distributions
Mandrake, Red Hat, Conectiva, Debian, and others. SuSE is participating in the development of
Foomatic 3.0, so that will also use Foomatic in the future. In addition, around 5000 people every
day visit the linuxprinting.org web site.

The current Foomatic − the 2.0.x series

The XML database

The core of Foomatic since version 1.1 is an XML database containing one file for every printer,
one file for every driver, and one file for every adjustable option. These files contain all the
needed information about the printer and driver capabilities for both forming the database entry
pages on linuxprinting.org and providing the information about the driver's command lines and
their options.

(IV.) Foomatic from the Developer's View: How does it work?

C instead of Perl: huge speed improvements for Foomatic 5

http://www.linuxprinting.org/
http://www.linuxprinting.org/

The files contain:

Printers: Contain make, model, mechanism type (inkjet, laser, ...), maximum resolution,
color/grayscale, how well they work under free software, comments, information about
consumables, ...

•

Drivers: Contain name, type, command line prototype, comments, list of supported
printers, ...

•

Options: Contains name, type, for which printer(s) and driver(s) they are, default setting
(depending on printer driver), list/range of possible settings, names of the settings, for
which printer(s)/driver(s) each setting is valid, strings to insert into the driver's command
line.

•

How does the database work? − A small example

To explain how the database is is structured we assume that we have a very small database,
consisting only of the entries shown in Fig.1: 4 printers, 3 drivers, and 2 options. The real
database naturally has many more entries, especially every driver must have a "PageSize" option
to make the spoolers working correctly. The information contained in the XML files you see in
the colored boxes, the white boxes under the printer entries show what can be derived from the
information stored in the database.

At first lets see the "ljet4" driver, a driver for printers which understand PCL 5 and with
maximum resolutions up to 600 dpi. Its printer list contains all printers which understand PCL 5:
HP LaserJet 4, HP LaserJet 2100, and Epson EPL−5900. The Epson Stylus C80 does not
understand PCL.

The "pxlmono" driver serves for PCL 6 printers with up to 1200 dpi, in our case the HP LaserJet
2100 and the Epson EPL−5900.

The "gimp−print" driver supports all printers in our example because it generates various
languages, including PCL 5 for our lasers and ESC/P 2 for the Epson Stylus C80.

Note that the printers and the drivers are not associated by the printer's languages. A printer is
only considered as supported by a driver when it is in the printer list of the appropriate driver
entry.

All information about which options and possible option settings are available for a certain
printer/driver pair are stored in the option XML files as the so−called constraints. Constraints can
qualify or disqualify options or settings for a certain manufacturer, model, and/or driver. The
"Resolution" option in our example has constraints that qualify it for the "ljet4", "pxlmono", and
"gimp−print" drivers, so it is available for all drivers in our example. Due to no printer
restrictions made here, all printers/driver combos with one of the three shown drivers will have
the "Resolution" option here.

There are three choices "600 dpi", "1200 dpi", and "720 dpi". If they had no constraints they
applied for all printers/driver combos, but as laser printers and so also dedicated laser printer
drivers only having multiples of 300 dpi as resolutions and Epson inkjets only having multiples of
360 dpi, we have defined constraints for the settings, so that the user gets only valid resolutions
presented for his printer. The "600 dpi" resolution is qualified for the "pxlmono" and "ljet4"
drivers for arbitrary printers. These drivers support only lasers and all lasers in our example do
600 dpi. For 600 dpi with "gimp−print" we have additional restrictions to our three lasers because

(IV.) Foomatic from the Developer's View: How does it work?

6 How does the database work? − A small example

the C80 works with GIMP−Print, but not with 600 dpi. For the "1200 dpi" we had to impose the
constraint to only "pxlmono". The other two drivers are only PCL 5 drivers and so they drive
laser printers only up to 600 dpi. And as all lasers not supporting 720 dpi, the "720 dpi" choice is
restricted to exclusively being valid for the C80, independent which driver is used.

Fig. 1: An example to explain the structure of the database

The second option in our example is the numerical option "Copies", it allows integer numbers
from 1 to 999 as settings, the file only contains the range, not setting entries for every possible
number. Therefore no constraints can be applied to the settings. One has to define various
"Copies" option entries when there would be printers with different maximum numbers of copies.

Our "Copies" option is not an option of any of the drivers, it is an option of the printers which can
be set by sending a so−called PJL (Printer Job Language) command to the printer before sending
the job data itself. This facility is available in nearly every PostScript or PCL laser printer and the
commands are the same, independent whether the job itself is sent in PostScript, PCL 5, or PCL 6
(PostScript printers usually understand also PCL). So the commands are independent of the
printer driver used for the job itself. Therefore PJL options have only printer constraints, in our
example the candidates understanding PJL and so also the "Copies" option are the two HP lasers,
the LaserJet 4 and 2100.

(IV.) Foomatic from the Developer's View: How does it work?

How does the database work? − A small example 7

http://www.linuxprinting.org/database.html

What is done to set up a print queue with this data?

The first thing needed is a configuration file for the desired printer/driver/spooler combo. The
principle of obtaining this is the same for both generating it on the linuxprinting.org or with a
local copy of Foomatic.

At first a combo XML file for the chosen printer/driver combo is generated. After checking that
the printer is in the driver's printer list a C program ("foomatic−combo−xml.c") parses the
printer entry, the driver entry and then all option entries. The printer entry is written entirely into
the combo XML file, from the driver entry all except the printer list gets into the combo file and
from the options only the ones which are valid for the printer/driver combo, with all constraints
and invalid settings taken out. The C program does not use any XML libraries and loads only one
source XML file at a time, parses it sequentially, and writes the read data directly into the combo
XML file if it is needed. This makes the process very fast and less memory−consuming. The
combo XML file is a spooler−independent XML representation of the capabilities of the printer
driver combo and of how one prints PostScript files with it.

Now the combo XML file is parsed by another C program ("foomatic−perl−data.c")
which uses libxml2 from www.xmlsoft.org to generate a Perl data structure from the
XML file. This is done by a C program because there is one standard XML library with which the
process can be easily and fastly done. Doing this in Perl is much more complicated. This still
spooler−independent Perl data structure contains most of the data which the combo XML file
provides, especially all the information about how to execute the driver. It is inserted into all the
spooler−specific configuration files so that the filter scripts (which are written in Perl) know
about how to use the driver and how to apply the user−supplied option settings.

Now the spooler−specific configuration file is generated by wrapping spooler−specific stuff
around the Perl data−structure and, if necessary, hiding the Perl code in comment lines so that the
spooler does not choke on it. This is the file carrying all necessary information about the printer
and the driver in the configuration of the print queue. Either the user downloads it from
linuxprinting.org or the "foomatic−configure" Perl script of a local Foomatic installation
creates it when setting up the print queue.

In addition to the configuration file a filter script has to be installed which will be called by the
spooler to translate the incoming PostScript job data into the printer's native language. Depending
on the spooler the following filters are used

CUPS: cupsomatic
LPD. LPRng, GNUlpr: lpdomatic
PPR: ppromatic

PDQ: Filter code integrated in the
configuration file

No spooler: directomatic

The filters are Perl scripts and read at first the printer and driver information from the Perl data
structure in the configuration file. For that no extra Perl libraries or C programs are needed. The
filters get the option settings given by the user either from the spooler via command line
option/environment variables or embedded in the PostScript job data. With this information the
filter builds the appropriate GhostScript command line and executes it. It also inserts settings into
the job data, either PostScript or PJL commands.

(IV.) Foomatic from the Developer's View: How does it work?

8 What is done to set up a print queue with this data?

http://www.linuxprinting.org/
http://www.linuxprinting.org/foomatic.html
http://www.linuxprinting.org/cvsweb.cgi/foomatic/foomatic-combo-xml.c?rev=2.0&content-type=text/x-cvsweb-markup
http://www.linuxprinting.org/cvsweb.cgi/foomatic/foomatic-perl-data.c?rev=2.0&content-type=text/x-cvsweb-markup
http://www.xmlsoft.org
http://www.linuxprinting.org/
http://www.linuxprinting.org/cvsweb.cgi/foomatic/foomatic-configure.in?rev=2.0&content-type=text/x-cvsweb-markup
http://www.linuxprinting.org/cupsomatic
http://www.linuxprinting.org/lpdomatic
http://www.linuxprinting.org/ppromatic
http://www.linuxprinting.org/directomatic

How does printing with Foomatic work?

Fig. 2 shows a diagram of the data flow when Foomatic is used for printing. On the system there
is already a spooler (dark cyan box) and GhostScript with a driver (cyan box). A print queue is set
up using the linuxprinting.org web site or a local Foomatic installation (light yellow box). For this
a configuration file, a filter, and, if the configuration file is not already a PPD file (as with CUPS
or PPR as the spooler) an optional PPD file is installed (yellow boxes).

The data to be printed goes usually from the application program (light red) through a printing
frontend (blue) to the spooler (dark cyan), and from there through the filter (yellow) and
GhostScript with driver (cyan) to the printer.

When one executes the printing command in a application, it usually produces PostScript as
output and sends it to a printing frontend, normally the command line frontend "lpr". The user
can often modify the printing command to choose a printer and to set options, or to use another
command than "lpr". An "lpr" command line to print with a resolution of 1200 dpi on the
printer "lj" can look like this:

 lpr −P lj −o Resolution=1200 file.ps

The option settings specified on the command line (red line) accompany the PostScript data (blue
line) when the job goes to the spooler.

If the user chooses a graphical printing frontend ("kprinter", "xpp", "gtklp", "gpr", ...) as
the printing command in his application, a window pops up and shows a list of available printers
and gives the possibility to open a dialog with printer−specific options. The frontend must get the
information about the printers and options somehow (brown lines). In case of CUPS as the
spooler all frontends poll this information from the CUPS daemon (brown lines from the right)
and CUPS itself takes the printer option information from the PPD file of the appropriate print
queue. The PPD file is the configuration file generated by Foomatic when setting up the queue. In
case of LPD, LPRng, or GNUlpr being the spooler "kprinter" reads the Foomatic
configuration file directly (brown lines from the left) and "gpr" reads the Foomatic−generated
PPD file. "gpr" is a special GUI frontend: It uses PPD files and stuffs all option settings into the
PostScript data (magenta line), so it works with any spooler and also if there are different spoolers
on the client and on the server. "kprinter" calls "lpr" with the option settings on the
command line (blue and red lines).

(IV.) Foomatic from the Developer's View: How does it work?

How does printing with Foomatic work? 9

http://www.linuxprinting.org/
http://printing.kde.org/
http://cups.sf.net/xpp/
http://gtklp.sf.net/
http://sf.net/projects/lpr

Fig. 2: Data flow when printing with Foomatic

KDE applications use "kprinter" as their printing dialog, so they behave as "kprinter".

In PPD−aware applications as Star Office, OpenOffice.org, the GIMP, or Windows/Mac clients
using a PostScript driver, one assigns a PPD file (in our case the Foomatic−generated one) to
every print queue and the application gets the printer information from that file. The option
settings are all embedded in the PostScript data (magenta line), as with "gpr".

The spooler calls the appropriate Foomatic filter script and hands over all the PostScript and
option settings data to it. Then the filter builds the GhostScript command line according to the
users option settings and executes it. The resulting data in the printer's language (green line) goes
finally to the printer.

The structure of the XML database

Here we want to get deeper into the structure of the XML data files. Therefore we explain one
example printer, driver, and option XML file. The following text is mainly taken from the
README file of the Foomatic package.

(IV.) Foomatic from the Developer's View: How does it work?

10 The structure of the XML database

http://www.linuxprinting.org/foomatic.html
http://www.linuxprinting.org/foomatic/README

An option entry: "PageSize" (db/source/opt/2.xml)

Every option exists independently from printers or drivers, because they might apply to arbitrary
combinations of printers and/or drivers. In practice, some drivers have wholly unique options
("gimp−print"/"stp", for example), while others (lots of generic basic Ghostscript drivers, for
example) share some options.

<option type="enum" id="opt/2">

Options are of a type "enum", "bool", "int" or "float" options have an ID. The id is also the
filename.

The shortname is a spaceless short name for the thing. It must not contain "/" or ":" (otherwise it
will not be handled correctly in PPD files). It should be one of the standard Adobe PPD option
names if appropriate

 <arg_shortname>

Various things here, and all <comments>, are internationalized. They take the usual posit locale
codes in the form ox[shy], where ox is a two−letter is language code, and YY is two−letter
country code to distinguish differing national dialects.

Generally the national dialects won't be very common or necessary here. The backends currently
require that <en> content be provided.

 <en>PageSize</en><!−− backends only know <en> shortnames! −−>
 </arg_shortname>

The longname is a short phrase describing the thing in more detail GUI tools usually show
longnames

 <arg_longname>
 <en>Page Size</en>
 </arg_longname>

The comments are used to form documentation. In theory these can become man pages or the
like.

 <!−− A multilingual <comments> block can appear here, too;
 it should be treated as documentation for the user. −−>

The execution section describe how the backend should execute this option. The order and spot
apply to the driver's prototype for <arg_substitution /> (once called commandline) style options,
or just the order applies for <arg_postscript /> and <arg_pjl /> options. The user's value gets put
into the arg_proto's %s location.

For <arg_substitution /> options the <arg_proto> is inserted into the driver's command line, at the
spot (e. g. "%A") whose letter is given between the <arg_spot>...</arg_spot> tags, the
<arg_proto> of an <arg_postscript /> option is a snippet of PostScript code which is inserted in
the beginning of the PostScript data stream of the job, not after the code for the first page begins.
The <arg_proto> lines of <arg_pjl> are PJL commands which are sent to the printer before the
output of the drivers command line is sent. Because this only works reliably when the driver

(IV.) Foomatic from the Developer's View: How does it work?

An option entry: "PageSize" (db/source/opt/2.xml) 11

http://www.linuxprinting.org/cvsweb.cgi/foomatic/db/source/opt/2.xml?rev=2.0&content-type=text/x-cvsweb-markup

output does not have its own PJL command header, these options are ignored when the driver's
XML file is marked with a <nopjl /> tag in its <execution> section. Drivers which produce their
own PJL and therefore marked with <nopjl /> are for example "hpijs" and "hl1250".

 <arg_execution>
 <arg_order>100</arg_order>
 <arg_spot>Z</arg_spot>
 <arg_postscript />
 <arg_proto><</PageSize[%s]/ImagingBBox null>>setpagedevice</arg_proto>
 </arg_execution>

The constraints define what printer/driver combinations this option applies to. The most specific
constraint rules the day; it's "sense" says whether or not the option is "in". The winning constraint
also provides the default value used when this option applies to that printer and driver.

Constraint elements are: driver, make, model. The driver is the driver name, or not present to
apply to any driver. The make is the printer make, or not present to apply to any printer make.
The model is the driver model, or not present to apply to any printer. Instead of make/model, you
can also specify <printer>id</printer>.

IMPORTANT: The make and model must match the one in the printer xml definition, and
everywhere else in the other options. One needs to write a utility to change printer names
sensibly.

It is illegal to have a model with no make.•
It is illegal to have none of make/model/driver.•
It is illegal to have no constraints, or at least such options are never used.•

For enum options, the defval is the id of the enum_val that is the default. For other option types, it
is the actual default value (i. e, a number, or 1 or 0 for boolean, etc).

 <constraints>
 <constraint sense="true">
 <driver>sj48</driver>
 <arg_defval>ev/1</arg_defval>
 </constraint>
 <constraint sense="true">
 <driver>r4081</driver>
 <arg_defval>ev/1</arg_defval>
 </constraint>

(A gaillion constraints skipped)

 </constraints>
 <enum_vals>
 <enum_val id="ev/1">
 <ev_longname>
 <en>US Letter</en>
 </ev_longname>
 <!−− A multilingual <comments> block can appear here, too;
 it should be treated as documentation for the user. −−>
 <ev_shortname>
 <en>Letter</en>
 <!−− Until someone tells me how to learn the user locale in
 backends, the shortname must be monolingual in <en>! −−>
 </ev_shortname>

(IV.) Foomatic from the Developer's View: How does it work?

12 An option entry: "PageSize" (db/source/opt/2.xml)

If present, the driverval is what gets substituted in for the %s in the option's prototype. This way
the user−visible stuff can be anything.

 <ev_driverval>612 792</ev_driverval>

This enum_val has no constraints. It is OK for enum_vals to have no constraints; they are
assumed to apply unless constrained otherwise.

 </enum_val>
 <enum_val id="ev/115">
 <ev_longname>
 <en>A3</en>
 </ev_longname>
 <!−− A multilingual <comments> block can appear here, too;
 it should be treated as documentation for the user. −−>
 <ev_shortname>
 <en>A3</en>
 <!−− Until someone tells me how to learn the user locale in
 backends, the shortname must be monolingual in <en>! −−>
 </ev_shortname>
 <ev_driverval>842 1191</ev_driverval>

Here are some example constraints for an enum_val. The A3 size paper doesn't fit on lots of
printers, so there are various constraints to make the right thing happen.

 <constraints>
 <constraint sense="true">
 <driver>ml85p</driver>
 <arg_defval>na</arg_defval>
 </constraint>
 <constraint sense="true">
 <make>HP</make>
 <model>DeskJet 1000C</model>
 <driver>pnm2ppa</driver>
 <arg_defval>na</arg_defval>
 </constraint>
 <constraint sense="false">
 <make>HP</make>
 <model>DeskJet 820C</model>
 <driver>pnm2ppa</driver>
 <arg_defval>na</arg_defval>
 </constraint>

(lots more...)

 </constraints>
 </enum_val>
 </enum_vals>
</option>

For numerical (int, float) and bool options there is no <enum_vals> section. Instead of this
section numerical options have tags to specify minimum and maximum value:

 <arg_max>10.0</arg_max>
 <arg_min>0.0</arg_min>

(IV.) Foomatic from the Developer's View: How does it work?

An option entry: "PageSize" (db/source/opt/2.xml) 13

For the %s in the <arg_proto> a number, either the user's choice when he has specified this option
or the default value is inserted. Only numbers between the minimum and the maximum and in
case of int options only integer numbers are allowed.

Bool options can be set or not be set. There <arg_proto> will be inserted if they are set, nothing if
they are not set. A %s in the <arg_proto> is not allowed, there is nothing to insert for it. As
<arg_defval> in the option's constraints one can use 0 for not setting the option by default or 1 for
setting it by default.

Bool options need the specification of a name for the case when they are not set. This will be used
by GUIs and in PPD files:

 <arg_shortname_false>
 <en>CorrectBlack</en><!−− Backends only know <en> shortnames! −−>
 </arg_shortname_false>

This name should not contain spaces, ":", or "/".

A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml)

The printer file contains information specific to a particular printer.

<printer id="printer/100576">

Make and model are not internationalized. There will eventually be an "alias" mechanism, but the
need is different.

 <make>HP</make>
 <model>LaserJet 4000</model>

Various stuff about the machine

 <mechanism>

Printer types can be <laser />, <led />, <inkjet />, <dotmatrix />, <impact />, <sublimation />,
<transfer />. Other types we have to add to the CGI script on linuxprinting.org to make the web
interface displaying them properly.

 <laser/>

At some point we can make color be less of a boolean flag and more of a section full of goodies.

 <!−−not "color"−−>
 <resolution>

In theory this is a list. In practice We've only got one per printer which is the maximum resolution
the manufacturer claims for this printer.

 <dpi>
 <x>1200</x>
 <y>1200</y>
 </dpi>
 </resolution>

(IV.) Foomatic from the Developer's View: How does it work?

14 A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml)

http://www.linuxprinting.org/show_printer.cgi?recnum=100576
http://www.linuxprinting.org/cvsweb.cgi/foomatic/db/source/printer/100576.xml?rev=2.0&content-type=text/x-cvsweb-markup

 <consumables>

Information about ink, drums, etc. The comments are supposed to be qualitative ("Separate drum
and toner cartridges")

 <comments>
 <en>toner</en>
 </comments>

There should be <partno>12A1975</partno> elements with manufacturer part numbers for the
various carts, etc it takes. Then one could have a price watcher thingy like there is now for the
printers.

 <!−−one or more "partno" elements.−−>
 </consumables>
 </mechanism>

 <url>http://www.pandi.hp.com/pandi−db/prod_info.show?model=C4118A&name=LaserJet4000</url>

The lang section. In practice this will be only minimally useful:

Backends can pstops the ps down a level if needed•
Backends know if pjl options apply•
Backends can know if "quick text" will work•

Commonly used language tags: <pcl level="x" />, <escp2 />, <proprietary />

 <lang>
 <postscript level="2">
 <!−−unknown ppd filename "ppd"−−></postscript>
 <pjl/>
 <text>
 <charset>us−ascii</charset>
 </text>
 </lang>

The autodetection stuff

 <autodetect>

There are three ways to auto−detect a printer, via the parallel port (<parallel>...</parallel>), the
USB (<usb>...</usb>), or SNMP (TCP/Socket−connected printer, <snmp>...</snmp>). Through
these interfaces the printers report back an IEEE−1284−compliant ID string from which the fields
"MFG" (<manufacturer>...</manufacturer>), "MDL" (<model>...</model>), "DES"
(<description>...</description>), and "CMD" (<commandset>...</commandset>) are used. A
complete entry could look like:

 <autodetect>
 <parallel>
 <commandset>MLC,PCL,PML</commandset>
 <description>Hewlett−Packard DeskJet 660C</description>
 <manufacturer>HEWLETT−PACKARD</manufacturer>
 <model>DESKJET 660C</model>
 </parallel>
 </autodetect>

(IV.) Foomatic from the Developer's View: How does it work?

A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml) 15

On Linux you find this info for the parallel ports (/dev/lp<N>, <N> = 0, 1, 2, ...) in
the files

 /proc/sys/dev/parport/parport0/autoprobe*

for the USB under Linux it is more complicated, easiest is to use a little Perl script, called
"getusbprinterid.pl":

#!/usr/bin/perl

open FILE, "$ARGV[0]" or die;

my $result;
Calculation of IOCTL function 0x84005001 (to get device ID string):
len = 1024
IOCNR_GET_DEVICE_ID = 1
LPIOC_GET_DEVICE_ID(len) = _IOC(_IOC_READ, 'P', IOCNR_GET_DEVICE_ID, len)
_IOC(), _IOC_READ as defined in /usr/include/asm/ioctl.h

ioctl(FILE, 0x84005001, $result) or die;
close FILE;
Remove non−printable characters
$result =~ tr/[\x0−\x1f]/\./;
print "$result\n";

Running the program with "./getusbprinterid.pl /dev/usb/lp0" returns the ID
string of the device on /dev/usb/lp0.

 <!−−no known parport probe information−−>
 </autodetect>

Our grading system. It's US−style letter grades A, B, D, and F, which the website shows as
"Perfectly", "Mostly", "Partially" and "Paperweight". THERE IS NO "C"!!!

 <functionality>A</functionality>

Arguably, the scores should live with the printer/driver association and not on the printer, but then
it's a big hassle to figure out if a printer works... So the score is the one reached with the driver
working best, the "recommended" driver.

There's a spot for this "recommended" driver, usually the driver which gives the maximum output
quality. It is for user information on the web site, but newbie−friendly printer setup GUIs should
use it, too. Unfortunately, only "printerdrake" of Mandrake Linux makes use of it.

 <driver>Postscript</driver>

The <unverified /> tag was on all printer entries which were formerly entered by visitors using
the web printer input interface as the database was still PostGreSQL−driven.

 <!−−not "unverified"−−>

If there is a web site with additional interesting info about this printer, it can be mentioned in the
entry by putting it between <contrib_url>...</contrib_url> tags,

 <!−−no "contrib_url"−−>

(IV.) Foomatic from the Developer's View: How does it work?

16 A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml)

The regular notes section. The allowed tags are: <p>, and many other
simple tags (, <i>, <tt>, ...). Note that to distinguish what is XML and what is the embedded
HTML, make the following replacements:

< −−> <
> −−> >
" −−> "
' −−> '

 <comments>
 <en>
 I don't believe this:<p>

 <i>1200x1200 dpi only possible with Windows drivers,
 600x600 can be reached w/o particular software.
 The difference is visible, but only slightly, so
 the Functionality got "Mostly"<p></i><p>

 Do the following:<p>

 Set the resolution on the front panel to "Prores 1200", not
 to "Fastres 1200". When you use CUPS with HPs PPD file, turn
 off "Fastres 1200" in the printer configuration
 options.<p>

 Try the generic PostScript PPD file which comes with KUPS 1.0 or newer.
 </en>
 </comments>
</printer>

A driver entry: "md2k" (db/source/driver/md2k.xml)

The driver files contain information about drivers. There are a few things, but the two biggies are
the prototype and the printers list

<driver id="driver/md2k">
 <name>md2k</name>
 <url>http://plaza26.mbn.or.jp/~higamasa/gdevmd2k/</url>
 <execution>

Driver types are:

<ghostscript />: The driver code is compiled into GhostScript

<filter />:
The driver code is a separate executable, either a filter which converts
generic bitmap output of GhostScript to the printer's language, a wrapper
around GhostScript, or an IJS plug−in.

<uniprint />: A uniprint driver, consisting of one or more .upp files for GhostScript.

<postscript />:

A driver which has PostScript also as output (for PostScript printers). It
usually does not call GhostScript but only applies the user's option
settings to the data stream. But GhostScript can be called here, too, as for
downgrading to a lower PostScript level.

The driver type only provides information for the web pages, it is not used when generating

(IV.) Foomatic from the Developer's View: How does it work?

A driver entry: "md2k" (db/source/driver/md2k.xml) 17

http://www.linuxprinting.org/show_driver.cgi?driver=md2k
http://www.linuxprinting.org/cvsweb.cgi/foomatic/db/source/driver/md2k.xml?rev=2.0&content-type=text/x-cvsweb-markup

config files for a spooler.

 <ghostscript />

The driver's <execution> section can also contain a

 <nopjl />

which suppresses the usage of PJL options (options which send PJL commands to the printer).
This one does with drivers where the driver itself already produces a PJL header, the second one
built by the PJL options would then be ignored by the printer, and so this kind of options does not
make sense. Such drivers are for example "hpijs" and "hl1250".

The prototype defines what command the backends run to drive this printer. It must take
postscript on stdin and generate "printer stuff" on stdout. Various %A, %B, etc substitution
"spots" are specified; this is where substitution options will be placed.

 <prototype>gs −q −dBATCH −dSAFER −dQUIET −dNOPAUSE −sDEVICE=md2k%A%Z −sOutputFile=− −</prototype>
 </execution>
 <comments>
 <en>
 Part of the gdevmd2k−0.2a package by Shinya Umino. The web page and
 documentation are in Japanese.
 Here
 is an English translation of the driver's web page, and here is the README from the
 driver package.
 </en>
 </comments>

The printer list is a simple list of printers that this driver works with. Historically, these "bits"
were on the printer cgi form page, but now they're put here.

 <printers>
 <printer>
 <id>printer/240137</id><!−− Alps MD−1000 −−>
 </printer>
 <printer>
 <id>printer/240169</id><!−− Alps MD−1300 −−>
 </printer>
 <printer>
 <id>printer/240105</id><!−− Alps MD−2000 −−>
 </printer>
 <printer>
 <id>printer/240073</id><!−− Alps MD−4000 −−>
 </printer>
 </printers>
</driver>

In the printer list it is also possible to place comments specific to a certain printer/driver pair:

 <printer>
 <id>printer/62304</id><!−− HP LaserJet 4050 −−>
 <comments>
 <en>to 1200dpi</en>
 </comments>
 </printer>

(IV.) Foomatic from the Developer's View: How does it work?

18 A driver entry: "md2k" (db/source/driver/md2k.xml)

What is planned for the future − the 2.9.x series
Here are some ideas which we want to implement in the next generation of Foomatic. More ideas
and discussion you can find on:

The Foomatic Developers forum/newsgroup/mailing list:
http://www.linuxprinting.org/newsportal/thread.php3?name=linuxprinting.foomatic.devel
and http://www.linuxprinting.org/cgi−bin/mailman/listinfo/foomatic−devel and
http://www.linuxprinting.org/pipermail/foomatic−devel/2002q3/thread.html

•

The TODO list in the "Progamming" section of the "Contributing page":
http://www.linuxprinting.org/contribute.html#programming

•

Some ideas and sketches of implementation:
http://www.linuxprinting.org/Foomatic−Devel−Ideas.txt

•

Adobe−compliant PPD files for all spoolers

The main change will be that the configuration files for all spoolers will be PPD files. All
differences between spoolers will be taken care of in the filter scripts. The PPD files will also not
contain the Perl data structure any more, all information is provided in the Adobe−compliant PPD
format.

Advantages:

There is only one type of configuration files: PPDs•
For PPD−aware applications one uses the PPD which also serves as the configuration file
for the spooler, independent what spooler is used

•

Manufacturer−provided PPDs can be used with the same filters as PPDs provided by
Foomatic, independent whether they are for PostScript or non−PostScript printers or
whether they use Foomatic features or not. So all spoolers will get fully PPD−aware and
printer manufacturers can easily provide drivers which work in every printing
environment.

•

Collective options

This is a new option type to make it easier for users to choose the best settings for a certain
printing task, even if the driver has very many options. The idea is to have an enumerated choice
option which does not directly modify something in the driver's command line but sets several of
the other options.

For example we could have a "Document Type" option with the following choices:

Draft•
Office document•
Photo•

It would set the individual options "Media Type", "Resolution", and "Dither" as follows:

 Choice Media Type Resolution Dither
 −−
 Draft Plain Paper 300x300 dpi Fast
 Office document Plain Paper 600x600 dpi Floyd−Steinberg

(IV.) Foomatic from the Developer's View: How does it work?

What is planned for the future − the 2.9.x series 19

http://www.linuxprinting.org/newsportal/thread.php3?name=linuxprinting.foomatic.devel
http://www.linuxprinting.org/cgi-bin/mailman/listinfo/foomatic-devel
http://www.linuxprinting.org/pipermail/foomatic-devel/2002q3/thread.html
http://www.linuxprinting.org/contribute.html#programming
http://www.linuxprinting.org/Foomatic-Devel-Ideas.txt

 Photo Photo Paper 1200x1200 dpi Floyd−Steinberg

The individual options will have a setting named "Default" which will be the default setting and
when "Default" is chosen, this option is set by the collective option. When the user has made a
"real" choice in the individual option, this overrides the appropriate setting of the collective
option.

Options not being member of a collective option (as "Page Size" and "Media Source") are always
set individually by the user.

Features of Adobe's PPD format

To present the options in a more intuitive and ergonomic way and to prevent the user from getting
unexpected results we want to add two important features of the PPD standard:

Option groups: Options can be put together in groups to sort them by their logical context.
One could have groups for quality settings, paper settings, finishing, etc. One could also
put the member options of a collective option into a group, so that they stand on an own
tab and the collective option stands on the main tab to give newbie−friendly, not
overloaded option dialog. With sub−group one can even order the options in a tree
structure.

•

Option constraints: Option constraints (or conflicts) prevent the user from making choices
which make printing impossible or simply do not make sense (as Duplex on
transparencies or 1200 dpi on plain paper).

•

Splitting Foomatic in various packages

As in the new PPD−centric Foomatic the filters will also be able to use non−Foomatic PPDs they
should be separated from the main Foomatic packages with the database engine and the printer
configuration scripts. Also the printer database should be a separate package so that one can
update it without needing to update the software, too.

The packages could look like this:

foomatic−db−engine: The software reading the XML database and generating PPD files
from it and also generating print queues: DB.pm, foomatic−configure, ... versioning: 2.9.x

•

foomatic−filters: The software needed for queues which Foomatic PPD files to work:
foomatic−rip, cupsomatic, lpdomatic, ppromatic, directomatic, pdqomatic, ...
foomatic−filters can be used without the other packages, when one has pre−compiled
PPDs, or when one has manufacturer−supplied PPDs of native PostScript printers, so this
makes every PPD working with every spooler, versioning: 2.9.x

•

foomatic−database: The XML database with all printer entries and all manually
generated driver and option entries, versioning: date in the format yyyymmdd.r as for the
first release of today 20020716.1. By automatic mechanisms every day a tarball is
generated and probably an extra tarball with every CVS tag (for driver/distro releases).

•

foomatic−database−hpijs: The XML data for the HPIJS driver (only driver and option
entries). The Makefile will build the entries with the hpijs data generator, versioning:
<HPIJS version>.<release>, as the second release for HPIJS 1.1 will get 1.1.2.

•

(IV.) Foomatic from the Developer's View: How does it work?

20 Features of Adobe's PPD format

	Table of Contents
	(IV.) Foomatic from the Developer's View: How does Foomatic work?
	Why Foomatic?
	How did linuxprinting.org and Foomatic emerge?
	CUPS makes its appearance
	How CUPS uses the original PostScript PPD files
	How CUPS extends use of PPDs to the non-PostScript printer world
	Not enough supported printers...
	CUPS-O-Matic and Foomatic -- the first incarnations
	PDQ-O-Matic next...
	Creation of "Linuxprinting.org"
	MandrakeSoft goes CUPS!
	The Database grows up
	From Postgres to XML
	C instead of Perl: huge speed improvements for Foomatic
	Gathering more support for Foomatic and the Database

	The current Foomatic - the 2.0.x series
	The XML database
	How does the database work? - A small example
	What is done to set up a print queue with this data?
	How does printing with Foomatic work?
	The structure of the XML database
	An option entry: "PageSize" (db/source/opt/2.xml)
	A printer entry: HP LaserJet 4000 (db/source/printer/100576.xml)
	A driver entry: "md2k" (db/source/driver/md2k.xml)

	What is planned for the future - the 2.9.x series
	Adobe-compliant PPD files for all spoolers
	Collective options
	Features of Adobe's PPD format
	Splitting Foomatic in various packages

